В каких единицах измеряется напряжение электрического поля. Основные законы и формулы

Заряженное тело постоянно передает часть энергии, преобразуя ее в другое состояние, одной из частей которого является электрическое поле. Напряженность – основная составляющая, которая характеризует электрическую часть электромагнитного излучения. Его значение зависит от силы тока и выступает силовой характеристикой. Именно по этой причине высоковольтные провода размещают на большую высоту, чем проводку для меньшего тока.

Определение понятия и формула расчета

Вектор напряженности (E) — сила, действующая на бесконечно малый ток в рассматриваемой точке. Формула для определения параметра выглядит следующим образом:

  • F- сила, которая действует на заряд;
  • q –величина заряда.

Заряд, принимающий участие в исследовании, называется пробным. Он должен быть незначительным, чтобы не искажать результаты. При идеальных условиях в роли q выступает позитрон.

Стоит отметить, что величина относительна, ее количественная характеристика и направление зависят от координат и при смещении изменится.

Исходя из закона кулона сила, действующая на тело, равняется произведению потенциалов, деленному на квадрат расстояния между телами.

F=q 1* q 2 /r 2

Из этого следует, что напряженность в данной точке пространства прямо пропорциональна потенциалу источника и обратно пропорциональна квадрату расстояния между ними. В общем, символическом случае уравнение записывается следующим образом:

Исходя из уравнения, единица измерения электрического поля – Вольт на метр. Это же обозначение принято системой СИ. Имея значение параметра, можно вычислить силу, которая будет действовать на тело в исследуемой точке, а зная силу — найти напряженность электрического поля.

По формуле видно, что результат абсолютно не зависит от пробного заряда. Это необычно, так как данный параметр присутствует в первоначальном уравнении. Однако это логично, потому что источником является основной, а не пробный излучатель. В реальных условиях данный параметр имеет влияние на измеряемые характеристики и выдает искажение, что обуславливает использование позитрона для идеальных условий.

Так как напряженность – векторная величина, кроме значения она имеет направление. Вектор направлен от основного источника к исследуемому, или от пробного заряда к основному. Это зависит от полярности. Если знаки одинаковые, то происходит отталкивание, вектор направлен к исследуемой точке. Если точки заряжены разнополярно, то источники притягиваются. В этом случае принято считать, что вектор силы направлен от положительного источника к отрицательному.


Единица измерения

В зависимости от контекста и применения в областях электростатики напряженность электрического поля [E] измеряется в двух единицах. Это могут быть вольт/метр или ньютон/кулон. Причиной такой путаницы представляется получение ее из разных условий, выведение единицы измерений из применяемых формул. В некоторых случаях одна из размерностей используется намерено для предотвращения применения формул, которые работают только для частных случаев. Понятие присутствует в фундаментальных электродинамических законах, поэтому величина является для термодинамики базовой.

Источник может принимать различные формы. Описанные выше формулы помогают найти напряженность электрического поля точечного заряда, но источник может представлять собой и другие формы:

  • несколько независимых материальных точек;
  • распределенную прямую или кривую (статор электромагнита, провод и т.д.).

Для точечного заряда нахождение напряженности выглядит следующим образом: E=k*q/r 2 , где k=9*10 9

При воздействии на тело нескольких источников напряженность в точке будет равняться векторной сумме потенциалов. При действии распределенного источника вычисляется действующим интегралом по всей области распределения.

Характеристика может изменяться во времени в связи с изменением зарядов. Значение остается постоянным только для электростатического поля. Она является одной из основных силовых характеристик, поэтому для однородного поля направление вектора и величина q будут одинаковыми в любых координатах.

С точки зрения термодинамики

Напряженность выступает одним из основных и ключевых характеристик в классической электродинамике. Ее значение, а также данные электрического заряда и магнитной индукции представляются основными характеристиками, зная которые можно определить параметры протекания практически всех электродинамических процессов. Она присутствуют и выполняет важную роль в таких фундаментальных понятиях, как формула силы Лоренца и уравнения Максвелла.

F-сила Лоуренца;

  • q – заряд;
  • B – вектор магнитной индукции;
  • С – скорость света в вакууме;
  • j – плотность магнитного тока;
  • μ 0 – магнитная постоянная = 1,25663706*10 -6 ;
  • ε 0 – электрическая постоянная, равная 8,85418781762039*10 -12

Наряду со значением магнитной индукцией данный параметр является основной характеристикой электромагнитного поля, излучаемого зарядом. Исходя из этого, с точки зрения термодинамики напряженность – значительно более важное значение, чем сила тока или другие показатели.

Данные законы выступают фундаментальными, на них строится вся термодинамика. Следует отметить, что закон Ампера и другие более ранние формулы являются приближенными или описывают частные случаи. Законы Максвелла и Лоренца универсальны.

Практическое значение

Понятие напряженности нашло широкое применение в электротехнике. Оно применяется для расчетов норм сигналов, вычисления устойчивости системы, определения влияния электрического излучения на окружающие источник элементы.

Основной сферой, где понятие нашло широкое применение, является сотовая и спутниковая связь, телевышки и другие электромагнитные излучатели. Знание интенсивности излучения для данных устройств позволяют рассчитать такие параметры, как:

  • дальность действия радиовышки;
  • безопасное расстояние от источника до человека.

Первый параметр крайне важен для тех, кто устанавливает спутниковое телевизионное вещание, а также мобильную связь. Второй дает возможность определить допустимые нормы по излучению, тем самым обезопасив пользователей от вредного влияния электроприборов. Применение данных свойств электромагнитного излучения не ограничивается связью. На этих базовых принципах построена выработка энергии, бытовая техника, отчасти производство механических изделий (например, окрашивание при помощи электромагнитных импульсов). Таким образом, понимание величины является важным и для производственного процесса.

Интересные опыты, позволяющие увидеть картину силовых линий электрического поля: видео

«Физика - 10 класс»

При решении задач с использованием понятия напряжённости электрического поля нужно прежде всего знать формулы (14.8) и (14.9), определяющие силу, действующую на заряд со стороны электрического поля, и напряжённость поля точечного заряда. Если поле создаётся несколькими зарядами, то для расчёта напряжённости в данной точке надо сделать рисунок и затем определить напряжённость как геометрическую сумму напряжённостей полей.


Задача 1.


Два одинаковых положительных точечных заряда расположены на расстоянии r друг от друга в вакууме. Определите напряжённость электрического поля в точке, расположенной на одинаковом расстоянии r от этих зарядов.


Р е ш е н и е.


Согласно принципу суперпозиции полей искомая напряжённость равна геометрической сумме напряжённостей полей, созданных каждым из зарядов (рис. 14.17): = 1 + 2 .

Модули напряжённостей полей зарядов равны:

Диагональ параллелограмма, построенного на векторах 1 и 2 , есть напряжённость результирующего поля, модуль которой равен:

Задача 2.


Проводящая сфера радиусом R = 0,2 м, несущая заряд q = 1,8 10 -4 Кл, находится в вакууме. Определите: 1) модуль напряжённости электрического поля на её поверхности; 2) модуль напряжённости 1 электрического поля в точке, отстоящей на расстоянии r 1 = 10 м от центра сферы; 3) модуль напряжённости 0 в центре сферы.


Р е ш е н и е.


Электрическое поле заряженной сферы вне её совпадает с полем точечного заряда. Поэтому

Следовательно,


Задача 3.


В однородное электрическое поле напряжённостью Е 0 = 3 кН/Кл внесли точечный заряд q = 4 10 -10 Кл. Определите напряжённость электрического поля в точке А, находящейся на расстоянии r = 3 см от точечного заряда. Отрезок, соединяющий заряд и точку А, перпендикулярен силовым линиям однородного электрического поля.


Р е ш е н и е.


Согласно принципу суперпозиции напряжённость электрического поля в точке А равна векторной сумме напряжённостей однородного поля 0 и поля 1 , созданного в этой точке внесённым электрическим зарядом. На рисунке 14.18 показаны эти два вектора и их сумма. По условию задачи векторы 0 и 1 взаимно перпендикулярны. Напряжённость поля точечного заряда

Тогда напряжённость электрического поля в точке А равна:


Задача 4.


В вершинах равностороннего треугольника со стороной а = 3 см находятся три точечных заряда q 1 = q 2 = 10 -9 Кл, q 3 = -2 10 -9 Кл. Определите напряжённость электрического поля в центре треугольника в точке О.



Согласно принципу суперпозиции полей напряжённость поля в точке О равна векторной сумме напряжённостей полей, созданных каждым зарядом в отдельности: 0 = 1 + 2 + 3 , причём где

На рисунке 14.19 показаны векторы напряжённостей 1 , 2 , 3 . Сначала сложим векторы 1 и 2 . Как видно из рисунка, угол между этими векторами равен 120°. Следовательно, модуль суммарного вектора равен модулю l 1 l и направлен в ту же сторону, что и вектор 3 .

ЭЛЕКТРИЧЕСКИЙ ЗАРЯД. ЭЛЕМЕНТАРНЫЕ ЧАСТИЦЫ.

Электрический заряд q - физическая величина, определяющая интенсивность электромагнитного взаимодействия.

[q] = l Кл (Кулон).

Атомы состоят из ядер и электронов. В состав ядра входят положительно заряженные протоны и не имеющие заряда нейтроны. Электроны несут отрицательный заряд. Количество электронов в атоме равно числу протонов в ядре, поэтому в целом атом нейтрален.

Заряд любого тела: q = ±Ne , где е = 1,6*10 -19 Кл - элементарный или минимально возможный заряд (заряд электрона), N - число избыточных или недостающих электронов. В замкнутой системе алгебраическая сумма зарядов остается постоянной:

q 1 + q 2 + … + q n = const.

Точечный электрический заряд - заряженное тело, размеры которого во много раз меньше расстояния до другого наэлектризованного тела, взаимодействующего с ним.

Закон Кулона

Два неподвижных точечных электрических заряда в вакууме взаимодействуют с силами, направленными по прямой, соединяющей эти заряды; модули этих сил прямо пропорциональны произведению зарядов и обратно пропорциональны квадрату расстояния между ними:

Коэффициент пропорциональности

где - электрическая постоянная.

где 12 - сила, действующая со стороны второго заряда на первый, а 21 - со стороны первого на второй.

ЭЛЕКТРИЧЕСКОЕ ПОЛЕ. НАПРЯЖЕННОСТЬ

Факт взаимодействия электрических зарядов на расстоянии можно объяснить наличием вокруг них электрического поля - материального объекта, непрерывного в пространстве и способного действовать на другие заряды.

Поле неподвижных электрических зарядов называют электростатическим.

Характеристикой поля является его напряженность.

Напряженность электрического поля в данной точке - это вектор, модуль которого равен отношению силы, действующей на точечный положительный заряд, к величине этого заряда, а направление совпадает с направлением силы.

Напряженность поля точечного заряда Q на расстоянии r от него равна

Принцип суперпозиции полей

Напряженность поля системы зарядов равна векторной сумме напряженностей полей каждого из зарядов системы:

Диэлектрическая проницаемость среды равна отношению напряженностей поля в вакууме и в веществе:

Она показывает во сколько раз вещество ослабляет поле. Закон Кулона для двух точечных зарядов q и Q , расположенных на расстоянии r в среде c диэлектрической проницаемостью:

Напряженность поля на расстоянии r от заряда Q равна

ПОТЕНЦИАЛЬНАЯ ЭНЕРГИЯ ЗАРЯЖЕННОГО ТЕЛА В ОДНОРОДНОМ ЭЛЕКТРО-СТАТИЧЕСКОМ ПОЛЕ

Между двумя большими пластинами, заряженными противоположными знаками и расположенными параллельно, поместим точечный заряд q .

Так как электрическое поле между пластинами с напряженностью однородное, то на заряд во всех точках действует сила F = qE , которая при перемещении заряда на расстояние вдоль совершает работу

Эта работа не зависит от формы траектории, то есть при перемещении заряда q вдоль произвольной линии L работа будет такой же.

Работа электростатического поля по перемещению заряда не зависит от формы траектории, а определяется исключительно начальным и конечным состояниями системы. Она, как и в случае с полем сил тяжести, равна изменению потенциальной энергии, взятому с противоположным знаком:

Из сравнения с предыдущей формулой видно, что потенциальная энергия заряда в однородном электростатическом поле равна:

Потенциальная энергия зависит от выбора нулевого уровня и поэтому сама по себе не имеет глубокого смысла.

ПОТЕНЦИАЛ ЭЛЕКТРОСТАТИЧЕСКОГО ПОЛЯ И НАПРЯЖЕНИЕ

Потенциальным называется поле, работа которого при переходе из одной точки поля в другую не зависит от формы траектории. Потенциальными являются поле силы тяжести и электростатическое поле.

Работа, совершаемая потенциальным полем, равна изменению потенциальной энергии системы, взятой с противоположным знаком:

Потенциал - отношение потенциальной энергии заряда в поле к величине этого заряда:

Потенциал однородного поля равен

где d - расстояние, отсчитываемое от некоторого нулевого уровня.

Потенциальная энергия взаимодействия заряда q с полем равна .

Поэтому работа поля по перемещению заряда из точки с потенциалом φ 1 в точку с потенциалом φ 2 составляет:

Величина называется разностью потенциалов или напряжением.

Напряжение или разность потенциалов между двумя точками - это отношение работы электрического поля по перемещению заряда из начальной точки в конечную к величине этого заряда:

[U]=1Дж/Кл=1В

НАПРЯЖЕННОСТЬ ПОЛЯ И РАЗНОСТЬ ПОТЕНЦИАЛОВ

При перемещении заряда q вдоль силовой линии электрического поля напряженностью на расстояние Δ d поле совершает работу

Так как по определению, то получаем:

Отсюда и напряженность электрического поля равна

Итак, напряженность электрического поля равна изменению потенциала при перемещении вдоль силовой линии на единицу длины.

Если положительный заряд перемещается в направлении силовой линии, то направление действия силы совпадает с направлением перемещения, и работа поля положительна:

Тогда , то есть напряженность направлена в сторону убывания потенциала.

Напряженность измеряют в вольтах на метр:

[E]=1 B/м

Напряженность поля равна 1 В/м, если напряжение между двумя точками силовой линии, расположенными на расстоянии 1 м, равна 1 В.

ЭЛЕКТРИЧЕСКАЯ ЕМКОСТЬ

Если независимым образом измерять заряд Q , сообщаемый телу, и его потенциал φ, то можно обнаружить, что они прямо пропорциональны друг другу:

Величина С характеризует способность проводника накапливать электрический заряд и называется электрической емкостью. Электроемкость проводника зависит от его размеров, формы, а также электрических свойств среды.

Электроёмкостъ двух проводников - отношение заряда одного из них к разности потенциалов между ними:

Емкость тела равно 1 Ф , если при сообщении ему заряда 1 Кл оно приобретает потенциал 1 В.

КОНДЕНСАТОРЫ

Конденсатор - два проводника, разделенные диэлектриком, служащие для накопления электрического заряда. Под зарядом конденсатора понимают модуль заряда одной из его пластин или обкладок.

Способность конденсатора накапливать заряд характеризуется электроемкостью, которая равна отношению заряда конденсатора к напряжению:

Емкость конденсатора равна 1 Ф, если при напряжении 1 В его заряд равен 1 Кл.

Емкость плоского конденсатора прямо пропорциональна площади пластин S , диэлектрической проницаемости среды, и обратно пропорциональна расстоянию между пластинами d :

ЭНЕРГИЯ ЗАРЯЖЕННОГО КОНДЕНСАТОРА.

Точные эксперименты показывают, что W=CU 2 /2

Так как q = CU , то

Плотность энергии электрического поля

где V = Sd - объем, занимаемый полем внутри конденсатора. Учитывая, что емкость плоского конденсатора

а напряжение на его обкладках U=Ed

получаем:

Пример. Электрон, двигаясь в электрическом поле из точки 1 через точку 2, увеличил свою скорость от 1000 до 3000 км/с. Определите разность потенциалов между точками 1 и 2.

Физическая природа электрического поля и его графическое изображение . В пространстве вокруг электрически заряженного тела существует электрическое поле, представляющее собой один из видов материи. Электрическое поле обладает запасом электрической энергии, которая проявляется в виде электрических сил, действующих на находящиеся в поле заряженные тела.

Рис. 4. Простейшие электрические поля: а – одиночных положительного и отрицательного зарядов; б – двух разноименных зарядов; в – двух одноименных зарядов; г – двух параллельных и разноименно заряженныx пластин (однородное поле)

Электрическое поле условно изображают в виде электрических силовых линий, которые показывают направления действия электрических сил, создаваемых полем. Принято направлять силовые линии в ту сторону, в которую двигалась бы в электрическом поле положительно заряженная частица. Как показано на рис. 4, электрические силовые линии расходятся в разные стороны от положительно заряженных тел и сходятся у тел, обладающих отрицательным зарядом. Поле, созданное двумя плоскими разноименно заряженными параллельными пластинами (рис. 4, г), называется однородным.
Электрическое поле можно сделать видимым, если поместить в него взвешенные в жидком масле частички гипса: они поворачиваются вдоль поля, располагаясь по его силовым линиям (рис. 5).

Напряженность электрического поля. Электрическое поле действует на внесенный в него заряд q (рис. 6) с некоторой силой F. Следовательно, об интенсивности электрического поля можно судить по значению силы, с которой притягивается или отталкивается некоторый электрический заряд, принятый за единицу. В электротехнике интенсивность поля характеризуют напряженностью электрического поля Е. Под напряженностью понимают отношение силы F, действующей на заряженное тело в данной точке поля, к заряду q этого тела:

E = F / q (1)

Поле с большой напряженностью Е изображается графически силовыми линиями большой густоты; поле с малой напряженностью - редко расположенными силовыми линиями. По мере удаления от заряженного тела силовые линии электрического поля располагаются реже, т. е. напряженность поля уменьшается (см. рис. 4 а,б и в). Только в однородном электрическом поле (см. рис. 4, г) напряженность одинакова во всех его точках.

Электрический потенциал . Электрическое поле обладает определенным запасом энергии, т. е. способностью совершать работу. Как известно, энергию можно также накопить в пружине, для чего ее нужно сжать или растянуть. За счет этой энергии можно получить определенную работу. Если освободить один из концов пружины, то он сможет переместить на некоторое расстояние связанное с этим концом тело. Точно так же энергия электрического поля может быть реализована, если внести в него какой-либо заряд. Под действием сил поля этот заряд будет перемещаться по направлению силовых линий, совершая определенную работу.
Для характеристики энергии, запасенной в каждой точке электрического поля, введено специальное понятие - электрический потенциал. Электрический потенциал? поля в данной точке равен работе, которую могут совершить силы этого поля при перемещении единицы положительного заряда из этой точки за пределы поля.
Понятие электрического потенциала аналогично понятию уровня для различных точек земной поверхности. Очевидно, что для подъема локомотива в точку Б (рис. 7) нужно затратить большую работу, чем для подъема его в точку А. Поэтому локомотив, поднятый на уровень Н2, при спуске сможет совершить большую работу, чем локомотив, поднятый на уровень Н2 За нулевой уровень, от которого производится отсчет высоты, принимают обычно уровень моря.

Точно так же за нулевой потенциал условно принимают потенциал, который имеет поверхность земли.
Электрическое напряжение . Различные точки электрического поля обладают разными потенциалами. Обычно нас мало интересует абсолютная величина потенциалов отдельных точек электрического поля, но нам весьма важно знать разность потенциалов?1-?2 между двумя точками поля А и Б (рис. 8). Разность потенциалов?1 и?2 двух точек поля характеризует собой работу, затрачиваемую силами поля на перемещение единичного заряда из одной точки поля с большим потенциалом в другую точку с меньшим потенциалом. Точно так же нас на практике мало интересуют абсолютные высоты Н1и Н2 точек А и Б над уровнем моря (см. рис. 7), но для нас важно знать разность уровней И между этими точками, так как на подъем локомотива из точки А в точку Б надо затратить работу, зависящую от величины Я. Разность потенциалов между двумя точками поля носит название электрического напряжения. Электрическое напряжение обозначают буквой U (и). Оно численно равно отношению работы W, которую нужно затратить на перемещение положительного заряда q из одной точки поля в другую, к этому заряду, т. е.

U = W / q (2)

Следовательно, напряжение U, действующее между различными точками электрического поля, характеризует запасенную в этом поле энергию, которая может быть отдана путем перемещения между этими точками электрических зарядов.
Электрическое напряжение - важнейшая электрическая величина, позволяющая вычислять работу и мощность, развиваемую при перемещении зарядов в электрическом поле. Единицей электрического напряжения служит вольт (В). В технике напряжение иногда измеряют в тысячных долях вольта - милливольтах (мВ) и миллионных долях вольта - микровольтах (мкВ). Для измерения высоких напряжений пользуются более крупными единицами - киловольтами (кВ) - тысячами вольт.
Напряженность электрического поля при однородном поле представляет собой отношение электрического напряжения, действующего между двумя точками поля, к расстоянию l между этими точками:

E = U / l (3)

Напряженность электрического поля измеряют в вольтах на метр (В/м). При напряженности поля в 1 В/м на заряд в 1 Кл действует сила, равная 1 ньютону (1 Н). В некоторых случаях применяют более крупные единицы измерения напряженности поля В/см (100 В/м) и В/мм (1000 В/м).

Закон кулона

Точечным зарядом

0 т.е.

Проведём радиус-вектор r r от заряда q к q r r. Он равен r r/r .

Отношение силы F q напряжённостью и обозначают через E r. Тогда:

1 Н/Кл = 1 / 1 Кл, т.е. 1 Н/Кл -

Напряжённость поля точечного заряда.

Найдём напряжённость E электростатического поля, создаваемого точечным зарядом q , находящимся в одно-родном изотропном диэлектрике, в точке, отстоящей от него, на расстоянии r . Мысленно поместим в эту точку пробный заряд q 0 . Тогда .

Отсюда получаем, что

радиус-вектор, проведённый от заряда q к точке, в которой определя-ется напряжённость поля. Из последней формулы следует, что модуль напряжённости поля:

Таким образом, модуль напряжённости в любой точке электростатического по-ля, создаваемого точечным зарядом в вакууме, пропорционален величине заря-да и обратно пропорционален квадрату расстояния от заряда до точки, в кото-рой определяется напряжённость.

Суперпозиция полей

Если электрическое поле создаётся системой точечных зарядов, то его на-пряжённость равна векторной сумме напряжённостей полей , создаваемых каждым зарядом в отдельности, т.е. . Это соотношение носит название принципа суперпозиции (наложения) полей . Из принципа суперпозиции по-лей следует также, что потенциал ϕ, создаваемый системой точечных зарядов в некоторой точке, равен алгебраической сумме потенциалов , создаваемых в этой же точке каждым зарядом в отдельности, т.е. Знак потенциала совпадает со знаком заряда q i отдельных зарядов системы.

Линии напряженности

Для наглядного изображения электриче-ского поля пользуются линиями напряжённости или силовыми линиями , т.е. линиями, в каждой точке которых вектор напряжённости электрического поля направлен по касательной к ним. Наиболее просто это можно уяснить на при-мере однородного электростатического поля, т.е. поля, в каждой точке кото-рого напряжённость одинакова по модулю и направлению. В этом случае линии напряжённости проводятся так, чтобы число линий Ф Е, проходящих через еди-ницу площади плоской площадки S , расположенной перпендикулярно к этим

линиям, равнялось бы модулю E напряжённости этого поля, т.е.

Если поле неоднородное, то надо выбрать элементарную площадку dS , перпендикулярную к линиям напряжённости, в пределах которой на-пряжённость поля можно считать постоянной.

где E - число линий напряжённости, пронизывающих эту площадку, т.е. модуль напряжённости электрического поля равен числу линий напряжённости, приходящихся на единицу площади площадки, перпендикулярной к ней.

Теорема гаусса

Теорема: поток напряжённости электростатического поля через любую замкнутую поверхность равен алгебраической сумме зарядов, заключённых внутри неё, делённой на электрическую постоянную и диэлектрическую проницаемость среды.

Если интегрирование производится по всему объёму V , по которому распреде-лён заряд. Тогда при непрерывном распределении заряда на некоторой поверх-ности S 0 теорема Гаусса записывается в виде:

В случае объёмного распределения:

Теорема Гаусса связывает между собой величину заряда и напряжённость поля, которое им создаётся. Этим и определяется значение данной теоремы в электростатике, поскольку она позволяет рассчитывать напряжённость, зная расположение зарядов в пространстве.

Циркуляция электр.поля.

Из выражения

следует также, что при переносе заряда по замкнутому пути, т.е., когда заряд возвращает-ся в исходное положение, r 1 = r 2 и A 12 = 0. Тогда запишем

Сила , действующая на заряд q 0 , равна . Поэтому последнюю формулу перепишем в виде

Ности электростатического поля на направление Разделив обе части это-го равенства на q 0 , находим:

Первое равенство – этоциркуляция напряжённости электрического поля .

Конденсаторы

Конденсаторы представ-ляют собой два проводника, очень близко расположенные друг к другу и разде-лённые слоем диэлектрика. Электроём-кость конденсатора – способность конденсатора накапливать на себе заряды. т.е. ёмкостью конденсатора называется физическая величина , равная отноше-нию заряда конденсатора к разности потенциалов между его обкладками. Ёмкость конденсатора, как и ёмкость проводника, измеряется в фарадах (Ф): 1 Ф - это ёмкость такого конденсатора, при сообщении которому заряда в 1 Кл, разность потенциалов между его обкладками изменяется на 1 В.

Энергия электр. поля

Энергия заряженных проводников запасена в виде электрического поля. Поэтому целесообразно выразить её через напряжённость, характеризующую это поле. Это проще всего проделать для плоского конденсатора. В этом случае , где d - расстояние между обкладками, и . Здесь ε0 - электрическая постоянная, ε - диэлектрическая проницаемость диэлектрика, заполняющего конденсатор, S - площадь каждой обкладки. Подставляя эти выражения, получаем Здесь V = Sd - объём, занимаемый полем, равный объёму конденсатора.

Работа и мощность тока.

Работой электрического тока называется работа, которую совершают силы электрического поля, созданного в электрической цепи, при перемещении заряда по этой цепи.

Пусть к концам проводника приложена постоянная раз-ность потенциалов (напряжение) U = ϕ1− ϕ2.

A = q (ϕ1−ϕ2) = qU .

С учётом этого получаем

Применяя закон Ома для однородного участка цепи

U = IR , где R - сопротивление проводника, запишем:

A = I 2 Rt .

Работа A , совершённая за время t , будет равна сумме элементарных работ, т.е.

По определению мощность электрического тока равна P = A/t . Тогда:

В системе единиц СИ работа и мощность электрического тока измеряются соответственно в джоулях и ваттах.

Закон Джоуля-Ленца.

Электроны, движущиеся в металле под действием электрического поля, как уже отмечалось, непрерывно сталкиваются с ионами кристаллической решётки, передавая им свою кинетическую энергию упорядоченного движения. Это при-водит к увеличению внутренней энергии металла, т.е. к его нагреванию. Соглас-но закону сохранения энергии, вся работа тока A идёт на выделение количества теплоты Q , т.е. Q = A . Находим Это соотношение называют законом Джоуля Ленца .

Закон полного тока.

Циркуляция индукции магнитного поля по произвольному замкнутому контуру равна произведению магнитной постоянной, магнитной проницаемости на алгебраическую сумму сил токов, охваты-ваемых этим контуром.

Силу тока можно найти, используя плотность тока j:

где S - площадь поперечного сечения проводника. Тогда закон полного тока записывается в виде:

Магнитный поток.

Магнитным потоком через некоторую поверхность называют число линий магнитной индукции, пронизывающих её.

Пусть в неоднородном магнитном поле находится поверхность площадью S . Для нахождения магнитного потока через неё мысленно разделим поверхность на элементарные участки площадью dS , которые можно считать плоскими, а поле в их пределах однородным. Тогда элементарный магнитный поток B через эту поверхность равен:

Магнитный поток через всю поверхность равен сумме этих потоков: , т.е.:

. В системе единиц СИ магнитный поток измеряется в веберах (Вб).

Индуктивность.

Пусть по замкнутому контуру течёт постоянный ток силой I . Этот ток создаёт вокруг себя магнитное поле, которое пронизывает площадь, охватываемую проводником, создавая магнитный поток. Известно, что магнитный поток Ф B пропорционален модулю индукции магнитного поля B , а модуль индукции магнитного поля, возникающего вокруг проводника с током, пропор-ционален силе тока I. Из этого следует Ф B ~ B ~ I , т.е. Ф B = LI .

Коэффициент пропорциональности L между силой тока и магнитным потоком, создаваемым этим током через площадь, ограниченную проводником , называют индуктивностью проводника .

В системе единиц СИ индуктивность измеряется в генри (Гн).

Индуктивность соленоида.

Рассмотрим индуктивность соленоида длиною l , с поперечным сечением S и с общим числом витков N , заполненного веществом с магнитной проницаемостью μ. При этом возьмём соленоид такой длины, чтобы его можно было рассматривать как бесконечно длинный. При протека-нии по нему тока силой I внутри него создаётся однородное магнитное поле, направленное перпендикулярно к плоскостям витков. Модуль магнитной индукции этого поля находится по формуле

B = μ0μnI ,

Магнитный поток Ф B через любой виток соленоида равен Ф B = BS (см. (29.2)), а полный Ψ поток через все витки соленоида будет равен сумме магнитных потоков через каждый виток, т.е. Ψ = NФ B = NBS .

N = nl , получаем: Ψ = μ0μ = n 2 lSI = μ0μ n 2 VI

Приходим к выводу, что индуктивность соленоида равна:

L =μμ0 n 2 V

Энергия магнитного поля.

Пусть в электрической цепи протекает постоянный ток силой I . Если отключить источник тока и замкнуть цепь (переключатель П перевести в положение 2 ), то в ней некоторое время будет течь убывающий ток, обусловленный э.д.с. самоиндукции .

Элементарная работа, совершаемая э.д.с. самоиндукции по переносу по цепи элементарного заряда dq = I·dt , равна Сила тока изменяется от I до 0. Поэтому, интегрируя это выражение в указанных пределах, получаем работу, совершаемую э.д.с. самоиндукции за время, в течение которого происхо-дит исчезновение магнитного поля: . Эта работа расходует-ся на увеличение внутренней энергии проводников, т.е. на их нагревание. Совер-шение этой работы сопровождается также исчезновением магнитного поля, кото-рое первоначально существовало вокруг проводника.

Энергия магнитного поля, существующего вокруг проводников с током, равна

W B = LI 2 / 2.

получаем, что

Магнитное поле внутри соленоида однородное . Поэтому объёмная плотность энергии w B магнитного поля, т.е. энергия единицы объёма поля, внутри соленоида равна .

Вихревое электр. поле.

Из закона Фарадея для электромагнитной индукции следует, что при всяком изменении магнитного потока, пронизывающего пло-щадь, охватываемую проводником, в нём возникает э.д.с. индукции , под действием которой в проводнике появляется индукционный ток, если проводник замкнутый.

Для объяснения э.д.с. индукции Максвелл выдвинул гипотезу, что перемен-ное магнитное поле создаёт в окружающем пространстве электрическое поле . Это поле действует на свободные заряды проводника, приводя их в упорядо-ченное движение, т.е. создавая индукционный ток. Таким образом, замкнутый проводящий контур является своеобразным индикатором, с помощью которого и обнаруживается данное электрическое поле. Обозначим напряжённость этого поля через E r. Тогда э.д.с. индукции

известно, что циркуляция напряжённости электростатического поля равна нулю, т.е.

Следует, что т.е. электрическое поле, возбуждаемое изменяющимся со временем магнитным полем, является вихревым (не потенциальным ).

Следует отметить, что линии напряжённости электростатического поля начинаются и заканчиваются на зарядах, создающих поле, а линии напряжённости вихревого электрического поля всегда замкнутые.

Ток смещения

Максвелл высказал гипотезу, что переменное магнитное поле создаёт вихревое электрическое поле. Он сделал и обратное пред-положение: переменное электрическое поле должно вызывать возникновение магнитного поля . В дальнейшем эти обе гипотезы получили экспериментальное подтверждение в опытах Герца. Появление магнитного поля при изменении электрического поля можно трактовать так, как будто бы в пространстве возни-кает электрический ток. Этот ток был назван Максвеллом током смещения .

Ток смещения может возникать не только в вакууме или диэлектрике, но и в проводниках, по которым течёт переменный ток. Однако в этом случае он пренебрежимо мал по сравнению с током проводимости.

Максвелл ввёл понятие полного тока. Сила I полного тока равна сумме сил I пр и I см токов проводимости и смещения, т.е. I = I пр + I см. Получаем:

Уравнение Максвелла.

Первое уравнение.

Из этого уравнения следует, что источником электрического поля является изменяющееся со временем магнитное поле.

Второе уравнение Максвелла.

Второе уравнение. Закон полного тока Это уравнение показывает, что магнитное поле может создаваться как движущимися зарядами (электрическим током), так и переменным электрическим полем.

Колебания.

Колебаниями называются процессы, характеризуемые определённой повто-ряемостью со временем. Процесс распространения колебаний в пространстве называют волной . Любая система, способная колебаться или в которой могут происходить ко-лебания, называется колебательной . Колебания, происходящие в колебательной системе, выведенной из состояния равновесия и представленной самой себе, называют свободными колебаниями .

Гармонические колебания.

Гармоническими колебаниями называются колебания, в которых колеблющаяся физическая величина изменяется по закону Sin или Cos. Амплитуда - это наи-большее значение, которое может принимать колеблющаяся величина. Уравнения гармонических колебаний: и

тоже самое только с синусом. Периодом не-затухающих колебаний называют время одного полного колебания. Число ко-лебаний, совершаемых в единицу времени, называется частотой колебаний . Частота колебаний измеряется в герцах (Гц).

Колебательный контур.

Электрическую цепь, состоящую из индуктивности и ёмкости, называют колебательным контуром

Полная энергия электромагнитных колебаний в контуре есть величина постоянная, точно также как полная энергия механических колебаний.

При колебаниях всегда кинет. энергия переходит в потенциальную и наоборот.

Энергия W колебательного контура складывается из энергии W E электрического поля конденсатора и энергии W B магнитного поля индуктивности

Затухающие колебания.

Процессы, описываемые уравнением можно считать колебательными. Их называют затухающими колебаниями . Наименьший промежуток времени T , через который повторяются максимумы (или минимумы) называют периодом зату-хающих колебаний . Выражение рассматривают как амплитуду затухающих колебаний. Величина A 0 представляет собой амплитуду колебания в момент времени t = 0, т.е. это начальная ампли-туда затухающих колебаний. Величина β, от которой зависит убывание ампли-туды, называется коэффициентом затухания .

Т.е. коэффициент затухания обратно пропорционален времени, за которое амплитуда затухающих колебаний уменьшается в e раз.

Волны.

Волна - это процесс распространения колебаний (возмущения) в простран-стве .

Область пространст-ва , внутри которой происходят колебания , называется волновым полем .

Поверхность , отделяющую волновое поле от области , где колебаний ещё нет , на-зывают фронтом волны .

Линии , вдоль которых происходит распространение волны , называются лучами .

Звуковые волны.

Звук представляет собой колебания воздуха или другой упру-гой среды, воспринимаемые нашими органами слуха. Звуковые колебания, вос-принимаемые человеческим ухом, имеют частоты, лежащие в пределах от 20 до 20000 Гц. Колебания с частотами меньше 20 Гц называются инфразвуковыми , а больше 20 кГц - ультразвуковыми .

Характеристики звука. Звук у нас ассоциируется обычно с его слуховым вос-приятием, с ощущениями, которые возникают в сознании человека. В связи с этим можно выделить три его основные характеристики: высоту, качество и громкость.

Физической величиной, характеризующей высоту звука, является частота колебаний звуковой волны .

Для характеристики качества звука в музыке используют термины тембр или то-нальная окраска звука. Качество звука можно связать с физически измеримыми величинами. Оно определяется наличием обертонов, их числом и амплитудами.

Громкость звука связана с физически измеряемой величиной - интенсивностью волны. Измеряется в белах.

Законы теплового излучения

Закон Стефана - Больцмана - закон излучения абсолютно чёрного тела. Определяет зависимость мощности излучения абсолютно чёрного тела от его температуры. Формулировка закона:

Закон излучения Кирхгофа

Отношение излучательной способности любого тела к его поглощательной способности одинаково для всех тел при данной температуре для данной частоты и не зависит от их формы и химической природы.

Длина волны, при которой энергия излучения абсолютно чёрного тела максимальна, определяется законом смещения Вина : где T - температура в кельвинах, а λ max - длина волны с максимальной интенсивностью в метрах.

Строение атома.

Опыты Резерфорда и его сотрудников привели к выводу, что в центре атома находится плотное положительно заряженное ядро, диаметр которого не превышает 10 –14 –10 –15 м.

Изучая рассеяние альфа-частиц при прохождении через золотую фольгу, Резерфорд пришел к выводу, что весь положительный заряд атомов сосредоточен в их центре в очень массивном и компактном ядре. А отрицательно заряженные частицы (электроны) обращаются вокруг этого ядра. Эта модель коренным образом отличалась от широко распространенной в то время модели атома Томсона, в которой положительный заряд равномерно заполнял весь объем атома, а электроны были вкраплены в него. Несколько позже модель Резерфорда получила название планетарной модели атома (она действительно похожа на Солнечную систему: тяжелое ядро - Солнце, а обращающиеся вокруг него электроны - планеты).

А́том - наименьшая химически неделимая часть химического элемента, являющаяся носителем его свойств. Атом состоит из атомного ядра и электронов. Ядро атома состоит из положительно заряженных протонов и незаряженных нейтронов. Если число протонов в ядре совпадает с числом электронов, то атом в целом оказывается электрически нейтральным. В противном случае он обладает некоторым положительным или отрицательным зарядом и называется ионом. Атомы классифицируются по количеству протонов и нейтронов в ядре: количество протонов определяет принадлежность атома некоторому химическому элементу, а число нейтронов - изотопуэтого элемента.

Атомы различного вида в разных количествах, связанные межатомными связями, образуют молекулы.

Вопросы:

1. электростатика

2. закон сохранения электрического заряда

3. закон кулона

4. электрическое поле.напряженность электрического поля

6. суперпозиция полей

7. линии напряженности

8. поток-вектор напряженности электр.поля

9. теорема гаусса для электростатич.поля

10. теорема гаусса

11. циркуляция электр.поля

12. потенциал. Разность потенциалов электростатич.поля

13. связь между напряжением поля и потенциалом

14. конденсаторы

15. энергиязаряженного конденсатора

16. энергия электр поля

17. сопротивление проводника. Закон ома для частка цепи

18. закон ома для участка проводника

19. источники электр тока. Электродвижущая сила

20. работа и мощьность тока

21. закон джоуля ленца

22. магнитное поле.индукция магнитного поля

23. закон полного тока

24. магнитный поток

25. теорема гаусса для магнитного поля

26. работа по перемещению проводника с током в магнит поле

27. явление электомагнит индукции

28. индуктивность

29. индуктивность соленоида

30. явление и закон самоиндукции

31. энергия магнитного поля

32. вихревое электр поле

33. ток смещения

34. уравнение максвелла

35. второе уравнение максвелла

36. третье и четвертое уравнение максвлла

37. колебания

38. гармонические колебания

39. колебательный контур

40. затухающие колебания

41. вынужденные колебания. Явление резонанса

43. уравнение плоской монохроматич волны

44. звуковые волны

45. волновые и корпускулярные свойства света

46. Тепловое излучение и его характеристики.

47. Законы теплового излучения

48. Строение атома.

Закон кулона

Сила взаимодействия находится для так называемых точечных зарядов.

Точечным зарядом называется заряженное тело, размеры которого пренебрежимо малы по сравнению с расстоянием до других заряженных тел, с которыми оно взаимодействует.

Закон взаимодействия точечных зарядов был открыт Кулоном и формулируется следующим образом: модуль F силы взаи-модействия между двумя неподвижными зарядами q и q 0 пропорционален произведению этих зарядов, обратно пропорционален квадрату расстояния r между ними, т.е.

где ε0 - электрическая постоянная, ε - диэлектрическая проницаемость, характеризующая среду. Эта сила направлена вдоль прямой линии, соединяющей заряды. Электрическая постоянная равна ε0 = 8,85⋅10–12 Кл2/(Н⋅м2) или ε0 = 8,85⋅10–12 Ф/м, где фарад (Ф) единица электроёмкости. Закон Кулона в векторной форме запишется:

Проведём радиус-вектор r r от заряда q к q 0. Введём единичный вектор, направленный в ту же сторону, что и вектор r r. Он равен r r/r .

Электрическое поле. напряженность электрического поля

Отношение силы F r, действующей на заряд, к величине q 0 этого заряда является постоянным для всех вносимых зарядов, независимо от их величины. Поэтому это отношение принимают за характеристику электрического поля в данной точке. Её называют напряжённостью и обозначают через E r. Тогда:

1 Н/Кл = 1 / 1 Кл, т.е. 1 Н/Кл - напряжённость в такой точке поля, в которой на заряд в 1 Кл действует сила в 1 Н.